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J .  P H Y S .  A ( G E N .  P H Y S . ) ,  1 9 6 9 ,  S E R .  2 ,  V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

N-time joint photon counting distributions for Gaussian lightt 

D. DIALETIS 
Department of Physics and Astronomy, University of Rochester, Rochester, S e w  
York, U.S.A. 
IWS. received 2nd October 1968 

Abstract. Results have been presented by Bedard on the derivation of the /l’-fold 
joint photocount distribution of a Gaussian (thermal) radiation field of arbitrary 
spectral profile, when the counting-time intervals are short compared with the 
coherence time of the light. In this paper we extend these results for arbitrary 
counting-time intervals. For simplicity we assume that the fluctuating radiation field 
has a fixed direction of propagation and that all the photodetector surfaces lie within 
one coherence area on a plane normal to this direction of propagation. We show then 
that the eraluation of the X-fold joint photocount distribution and the photocount 
moments can be reduced to the solution of either a homogeneous or an inhomo- 
geneous (Fredholm) integral equation of the second kind. In the special case, when 
all Ar photodetectors are ‘open’ within the same time interval and the spectral profile 
of the light is Lorentzian, the S-fold joint photocount distribution and the photo- 
count moments can be explicitly evaluated. 

In  the present paper we consider the case of a fluctuating electromagnetic field in the 
presence of N photodetectors, which register photoelectrons within finite time intervals. 
We shall assume for simplicity that the fluctuating radiation field is polarized and that it 
has a fixed direction of propagation. In  addition, all the photodetector surfaces lie on a 
plane normal to this direction of propagation$. Then the radiation field incident on the 
photodetector surfaces may be described by the random complex amplitude V(t). In  the 
following we shall also assume that this amplitude has a zero mean value. 

The N-fold joint probability distribution p(nl ,  t,, T,; ...; n,, t,, Th7) that n, photo- 
electrons will be registered in the time interyal t,, t,+ T,, etc., is given by the expression 
(Bedard 1967) 

where 

i = 1, 2, ..., N. The angular brackets in equation (1) denote the appropriate statistical 
average with respect to the random variables W,. The coefficient K ,  in equation (2) is a 
measure of the quantum efficiency of the ith photodetector. 

I t  is well known (Bedard 1967, Klauder and Sudarshan 1968) that the N-fold joint 
probability distribution p(n,, t,, T,; ...; ? z N ,  t,, Ty) ,  as well as the generalized factorial 
moments, defined as 

n,! ffi W 

(n,[’J . . . aN[l,’ ) = c TI;  e . .  ;nAJ,trlT, TN) (3) 

can be expressed in terms of the multi-dimensional generating function G(s,, s2, ..., s,) 
7 Research supported by the Air Force Cambridge Research Laboratories, Massachusetts, C.S.A. 

In an experimental situation the assumptions made correspond to the case where all N photo- 
detector surfaces lie within one coherence area on a plane normal to the direction of propagation of 
a linearly polarized parallel beam of light. 
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defined by the relation 
W W N  

G(s,, s2, . . ., sN) = 2 . . . 2 (n( 1 - )p(nl,  t l ,  TI;  . . . ; nN, thy, TN). 
ni=O nN=O t = 1  

The explicit expressions are as follows : 

and 

Substituting equation (1) into equation (4), we see that the generating function becomes 

where Wi is given by equation (2) .  
The relations presented up to this point apply to any radiation field. Let us assume 

from now on that the radiation field is of Gaussian nature, so that the N-fold joint prob- 
ability distribution for the random complex amplitude V(t)  (of zero mean value) is given 
by the following expression : 

Here V is the column matrix 

V =  (7) 
V N  

with Vi = V(ti) ,  i = 1,2, ..., N a n d  
Vt = (Vl*, v2*, . a . ,  Y?q*). (9b) 

Also \Ai is an N x N determinant, whose elements are defined in terms of the mutual 
coherence function (Mehta 1965) 

through the relation 
rij = (v,*v, ) (10) 

q 4 - 1 ) ~ ~  = ril. (11) 

Let us suppose now that the earliest measurement of our photodetectors starts at 
time -$T, and the latest measurement ends at time ST, so that all the time intervals 
( t i ,  ti+ T J ,  i = 1, 2 ,..., N ,  lie within ( - & T ,  $5"). Furthermore, let us take the 
Karhunen-Loeve expansion (Davenport and Root 1958 a) of the random function V(t)  
within the interval (- +T, +T),  namely 

The functions r#n(t) are eigenfunctions of the homogeneous Fredholm integral equation 

where 
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and they form in general? a complete orthonormal set in the domain -$T 6 t 6 $T. 
The autocorrelation function r ( t ,  t ' )  may be expressed in terms of the eigenvalues An and 
eigenfunctions $n(t) as follows: 

The coefficients cn in equation (12) are random variables of zero mean, since the 
amplitude V ( t )  is of zero mean. Moreover, they are statistically independent variables, i.e. 

<cn*cm> = h a n m  (16) 
where An is the variance of the coefficient c,. Now the transformation from the random 
amplitude V(t) to the random coefficients c, is linear. Hence the probability distribution 
of the set cn will be the Gaussian distribution 

If we substitute equations (12) and (2) into equation (7) and take into account 
equation (17), it follows that 

where 

and 
d2c, = d(Re ck) d(Im c k ) ,  

After performing the integrations in equation (18), we obtain for the generating function 
the relation 

Here ISnm+ AnFn,I denotes the determinant with elements Snm+ h,Fnm. It is an infinite 
determinant, when the set of eigenfunctions &(t) is infinite. The  value of this determinant 
does not vary, if we change the rows into columns. Furthermore, if we take into account 
that the generating function is a real function, so that it is equal to its complex conjugate, 
and also that 

we conclude that 
Fnm* = F,, (21) 

1 
1 

G(sl, s2, ..., = 
' a n m  + Fnmhml' 

Multiplying equation (20) by equation (22), and making use of the fact that the function 
G(s,, s2, .,., sx)  is always positive (cf. equation (7) ) ,  we finally obtain the relation 

where 
Dnm = a n m  +FnmAm + XnFnm + 2 XnFnPrmhm. (24) 

1 

t The autocorrelation function is a positive definite function. We assume also that it is square 
integrable. In this case (Davenport and Root 1958b) the set {$,,(t)} is complete in the domain 
-BT < t Q BT. 
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In general, it is rather difficult to evaluate the generating function either from 
equation (20) or from equation (23), when the determinants in these equations are infinite. 
But it is easy to verify that the matrix with elements Dnm is Hermitian. It can therefore 
be diagonalized by a unitary transformation and the infinite matrix in equation (23) can 
be transformed into an infinite product. 

In order to illustrate the above statement let us define the unitary matrix 

where #n(t)  are eigenfunctions of the homogeneous Fredholm integral equation of the 
second kind 

TI2 

pn+n(t> = 1 ~ * ( t ,  t’>#n(t’> dt’* (26) 
- T!2 

The Hermitian kernel K(t, t’) is defined by the relation 
N 

q t ,  t f )  = 2 sialpi( t )  + q t ’ p y t ,  t’) 
i = l  

A’ 

where 
1 
0 otherwise. 

if ti < t < t i+Ti 
@,(t) = 

We assume here that the kernel K(t, t’) is such that the eigenfunctions #n( t )  form a complete 
orthonormal set in the domain -4T < t < 3T. In this case the matrix Snm is certainly 
unitary. 

Now direct computation gives the relation 

where pn are the eigenvalues of the integral equation (26). In deriving equation (29) use 
has been made of equations (15) and (26), the orthonormality property of the eigenfunctions 
#%(t) and the completeness property of the set (q5n(t)} in the domain -4T < t 6 4T. 
Hence the unitary S matrix diagonalizes the Hermitian D matrix, and the diagonal elements 
are determined by the eigenvalues of the integral equation (26). 

Taking into account the unitarity of the S matrix, it follows from equation (29) that the 
determinant lDnml is equal to 

IDnmi = lSnTIIDrsII(S+Isml = I 2 SnTDrsSms*I = n(1 + ~ n > .  (30) 
r s  n 

Hence the generating function in equation (23) becomes 

and we conclude that the eigenvalues of the integral equation (26) with the Hermitian 
kernel K(t ,  t‘) given in equation (27) determine completely the generating function in the 
case of N photodetectors. 

The evaluation of the eigenvalues of equation (26) with the kernel given by equation (27) 
is difficult in practice. Part of the difficulty is due to the fact that, although the auto- 
correlation function r(t, t’) depends on the time difference t - t‘ for a stationary radiation 
field, this is not the case with the kernel K(t, t’). 
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We wish to show now how the generating function may be evaluated without the 
actual determination of the eigenvalues pn  in equation (26)t. Namely, we shall show 
that the generating function is given by the expression 

-1 Ti2 

G(sl,s2, ..., shr) = e x p ( - t J 0 d h j  dt  G(s,, s2, ..., s,; t ,  t ;  A) ) .  (32) 

Here G(s,, ..., s,; t ,  t’; A) is the solution of the inhomogeneous Fredholm integral equation 
of the second kind 

(33) 

The kernel K(t,  t’) is the same as in equation (26). I t  is given by equation (27). We should 
not expect then that the problem of solving this inhomogeneous integral equation has 
become any simpler than that of determining the eigenvalues p n  in equation (26). 

- T/2 

T/2 

G(s,, ..., s,; t ,  t’; A )  +A! K(t ,  t”)G(s,, ..., s,; t”, t’; A) dt” = K( t ,  t’) .  
- Ti2 

T o  show the validity of the relations (32) and (33)) let us define the function 

where pn,z,hn(t) are the eigenvalues and eigenfunctions of equation (26). Since the set 
{$rn(t)) is normalized, it follows that 

P n  G(s,, ..., s,; t ,  t ;  A )  dt = 2 - 
n 1 ++n 

(35) 

and hence 

dtG(sl, ..., s , ; t , t;A) = 2 l n ( l + p n )  = - Inn(-)) .  1: dh [!2 (36) 
n \ n  1 + P n  - Ti2 

If we compare this relation with the expression (31) of the generating function, equation (32) 
falloffs. 

Starting now with equation (26) and using the completeness property of the set 
(y!~~(t)} ,  we can easily show that 

or 

If we substitute pn&(t) from equation (26) into the second term in the right-hand side of 
equation (38) and take into account the definition (34) of G(s,, ..., s,; t ,  t’; A), the integral 
equation (33) follows. Hence the validity of the relations (32) and (33) has been established. 

We conclude then that the problem of the evaluation of the joint probability distribu- 
tions or the moments for N photodetectors in the presence of a homogeneous radiation 
field can be reduced to the solution of either a homogeneous or an inhomogeneous 
Fredholm integral equation of the second kind. 

There is one special case for which the generating function as given by equation (31) 
can be considerably simplified. It is a trivial matter to establish the identity 

K ( t ,  t’) = S(t - t’) + K(t ,  t’) 
T / 2  

= E(t,  t”)p*(t’, t”) dt” 

t We are indebted to Dr. G. Bedard for bringing to our attention this possibility. 

(39) 
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and 8(t- t ’ )  is the Dirac delta function. The function P( t ,  t’) is Hermitian in the special 
case, when all N photodetectors are ‘open’ within the same time interval ( -  BT, BT) and 
only then. In  this case let 1 +U, be the eigenvalues of the homogeneous integral equation 

Ti2  

(1 + v n ) x n ( t )  = P*(t, t ’ ) x n ( t ’ )  dt’. 
- T / 2  

From this relation and equation (39) it follows that 
Ti2  

(1 + v J 2 x , , ( t )  = j R*(t, t ’ ) x , ( t ’ )  dt‘. (42) 
- T / 2  

Use has been made of the hermiticity of p(t, t’) in deriving this last relation. When it is 
compared with equation (26), it gives the expression 

1 +pn = (1 + v n ) 2 .  (43) 
In  this case then the generating function (equation (31)) becomes 

where v, are the eigenvalues of the integral equation (cf. equations (40) and (41)) 

Here 

Ti2 

vnxn( t )  = s 1 r*(t, t ’ ) x , ( t ’ )  dt’. 
- T / 2  

N 

s = 2 s p i .  
i = 1  

(45) 

(46) 

The relations (44) and (45) are identical with those obtained by Slepian (1958) and used by 
Bedard (1966) in the case of one photodetector. The latter has actually determined the 
eigenvalues in equation (45) for narrowband Gaussian light with Lorentzian spectral 
profile, i.e. when 

He has also evaluated in this case the generating function (equation (44)), which is given 
by the expression 

r(t, t‘)  = Iexp(-Fl t - t ’ l ) .  (47) 

exP (r T )  G(s) = 
cosh.z+sinh z(l?T/Zz+z/2I’T) 

In our case the parameter s is given by equation (46). 
We see then that when all N photodetectors are ‘open’ within the same time interval 

and the Gaussian light has a Lorentzian spectral profile, the N-fold joint photocount 
distribution and the photocount moments can be explicitly evaluated by substituting 
equations (48), (49) and (46) into equations ( 5 )  and (6). In the general case, when the N 
photodetectors are ‘open’ within different time intervals of any magnitude and the spectral 
profile of the Gaussian light is arbitrary, the generating function is given by equation (31) 
and the eigenvalues p, are determined from equations (26) and (27). These relations for 
the generating function and the eigenvalues constitute a non-trivial generalization of the 
relations (44) and (45). 
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